Pagina-afbeeldingen
PDF
ePub

sides of the parallelogram. This is the case, as hath been already noticed, with some of the oblique nutations of the head. Sometimes the number of co-operating muscles is very great. Dr. Nieuentyt, in the Leipsic Transactions, reckons up a hundred muscles that are employed every time we breathe; yet we take in, or let out, our breath, without reflecting what a work is thereby performed: what an apparatus is laid in, of instruments for the service, and how many such contri- . bute their assistance to the effect! Breathing with ease, is a blessing of every moment; yet, of all others, it is that which we possess with the least consciousness. A man in an asthma is the only man who knows how to estimate it. IV. Mr. Home has observed”, that the most important and the most delicate actions are performed in the body by the smallest muscles: and he mentions, as his examples, the muscles which have been discovered in the iris of the eye, and the drum of the ear. The tenuity of these muscles is astonishing. They are microscopic hairs; must be magnified to be visible; yet are they real, ef. fective muscles: and not only such, but the grandest and most precious of our faw * Phil. Trans, pasti, 1800.p.s.

[ocr errors]

culties, sight, and hearing, depend upon their health and action. V. The muscles act in the limbs with what is called a mechanical disadvantage. The muscle at the shoulder, by which the arm is raised, is fixed nearly in the same manner as the load is fixed, upon a steelyard, within a few decimals, we will say, of an inch, from the centre upon which the steelyard turns. In this situation, we find that a very heavy draught is no more than sufficient to countervail the force of a small lead plummet, placed upon the long arm of the steelyard, at the distance of perhaps fifteen or twenty inches from the centre, and on the other side of it. And this is the disadvantage which is meant. And an absolute disadvantage, no doubt, it would be, if the object were, to spare the force of muscular contraction. But observe how conducive is this constitution to animal conveniency. Mechanism has always in view one or other of these two purposes; either to move a great weight slowly, and through a small space, or to move a light weight rapidly, through a considerable sweep. For the former of these purposes, a different species of lever, and a different collocation of the muscles, might be better than the present: but for the second, the present struc

ture is the true one. Now so it happens, that the second, and not the first, is that which the occasions of animal life principally call for. In what concerns the human body, it is of much more consequence to any man to be able to carry his hand to his head with due expedition, than it would be to have the power of raising from the ground a heavier load (of two or three more hundred weight, we will suppose,) than he can lift at present. This last is a faculty, which on some extraor dinary occasions, he may desire to possess; but the other is what he wants and uses every hour or minute. In like manner, a husbandman or a gardener will do more execution, by being able to carry his scythe, his rake, or his flail, with a sufficient dispatch through a sufficient space, than if, with greater strength, his motions were proportionably more confined and slow. It is the same with a mechanic in the use of his tools. It is the same also with other animals in the use of their limbs. In general, the vivacity of their motions would be ill exchanged for greater force under a clumsier structure. We have offered our observations upon the structure of muscles in general; we have also noticed certain species of muscles: but there are also single muscles, which bear marks of mechanical contrivance, appropriate as well as particular. Out of many instances of this kind, we select the following. I. Of muscular actions, even of those which are well understood, some of the most curious are incapable of popular explanation; at least, without the aid of plates and figures. This is in a great measure the case, with a very familiar, but, at the same time, a very complicated motion,-that of the lower jaw; and with the muscular structure by which it is produced. One of the muscles concerned may, however, be described in such a manner, as to be, I think, sufficiently comprehended for our present purpose. The problem is to pull the lower jaw down. The obvious method should seem to be, to placea straight muscle, viz. to fix a string from the chin to the breast, the contraction of which would open the mouth, and produce the motion required at once. But it is evident that the form and liberty of the neck forbid a muscle being laid in such a position; and that, consistently with the preservation of this form, the motion, which we want, must be effectuated, by some muscular mechanism, disposed further back in the jaw. The mechanism adopted is as follows. A certain muscle called the diagastric, rises on the side of the face, considerably above the insertion of the lower jaw, and comes down, being converted in its progress into a round tendon. Now it is manifest that the tendon, whilst it pursues a direction descending towards the jaw, must, by its contraction, pull the jaw up, instead of down. What then was to be done? This, we find, is done. The descending tendon, when it is got low enough, is passed through a loop, or ring, or pulley, in the os hyoides, and then made to ascend; and, having thus changed its line of direction, is inserted into the inner part of the chin: by which device, viz. the turn at the loop, the action of the muscle (which in all muscles is contraction) that before would have pulled the jaw up, now as necessarily draws it down. “The mouth,” says Heister, “is opened by means of this trochlea in a most wonderful and elegant manner.” o II. What contrivance can be more mechanical than the following, viz. a slit in one tendon to let another tendon pass through it? This structure is found in the tendons which move the toes and fingers. The long tendon, as it is called, in the foot, which bends the first joint of the toe, passes through the short tendon which bends the second joint; which course allows to the sinew more li

« VorigeDoorgaan »