Pagina-afbeeldingen
PDF
ePub

made scarcely larger than the head of a corking pin; and these minute globules are sunk so deeply in the skull, and lie so sheltered within the velvet of its covering, as that any contraction of what may be called the eye-brows, not only closes up 'the apertures which lead to the eyes, but presents a cushion, as it were, to any sharp or protuding substance which might push against them. This aperture, even in its ordinary state, is like a pin-hole in a piece of velvet, scarcely pervious to loose particles of earth.

Observe then, in this structure, that which we call relation. There is no natural connexion between a small sunk eye and a shovel palmated foot. Palmated feet might have been joined with goggle eyes; or small eyes might have been joined with feet of any other form. What was it therefore which brought them together in the mole? That which brought together the barrel, the chain, and the fusee, in a watch; design; and design, in both cases, inferred, from the relation which the parts bear to one another in the prosecution of a common purpose. As hath already been observed, there are different ways of stating the relation, according as we set out from a different part. In the instance before us, we may either consider the shape of the feet, as

qualifying the animal for that mode of life and inhabitation, to which the structure of its eyes confines it; or we may consider the structure of the eye, as the only one which would have suited with the action to which the feet are adapted. The relation is manifest, whichever of the parts related we place first in the order of our consideration. In a word; the feet of the mole are made for digging; the neck, nose, eyes, ears, and skin, are peculiarly adapted to an underground life; and this is what I call relation.

CHAPTER XVI.

COMPENSATION.

COMPENSATION is a species of relation. It is relation when the defects of one part, or of one organ, are supplied by the structure of another part or of another organ. Thus,

I. The short unbending neck of the ele phant, is compensated by the length and flexibility of his proboscis. He could not have reached the ground without it; or, if it be supposed that he might have fed upon the fruit, leaves, or branches of trees, how was he to drink? Should it be asked, Why is the elephant's neck so short? it may

be answered, that the weight of a head so heavy could not have been supported at the end of a longer lever. To a form, therefore, in some respects necessary, but in some respects also inadequate to the occasion of the animal, a supplement is added, which exactly makes up the deficiency under which he laboured.

If it be suggested that this proboscis may have been produced, in a long course of generations, by the constant endeavour of the elephant to thrust out his nose (which is the general hypothesis by which it has lately been attempted to account for the forms of animated nature), I would ask, How was the animal to subsist in the mean time; during the process; until this prolongation of snout were completed? What was to become of the individual, whilst the species was perfecting?

Our business at present is, simply to point out the relation which this organ bears to the peculiar figure of the animal to which it belongs. And herein all things correspond. The necessity of the elephant's proboscis arises from the shortness of his neck; the shortness of the neck is rendered necessary by the weight of the head. Were we to enter into an examination of the structure and anatomy of the proboscis itself, we

should see in it one of the most curious of all examples of animal mechanism. The disposition of the ringlets and fibres, for the purpose, first, of forming a long cartilaginous pipe; secondly, of contracting and lengthening that pipe; thirdly, of turning it in every direction at the will of the animal; with the superaddition at the end, of a fleshy production, of about the length and thickness of a finger, and performing the office of a finger, so as to pick up a straw from the ground; these properties of the same organ, taken together, exhibit a specimen, not only of design (which is attested by the advantage), but of consummate art, and, as I may say, of elaborate preparation, in accomplishing that design.

II. The hook in the wing of a bat is strictly a mechanical, and, also, a compensating contrivance. At the angle of its wing there is a bent claw, exactly in the form of a hook, by which, the bat attaches itself to the sides of rocks, caves, and buildings, laying hold of crevices, joinings, chinks, and roughnesses. It hooks itself by this claw; remains suspended by this hold; takes its flight from this position: which operations compensate for the decrepitude of its legs and feet. Without her hook, the bat would

be the most helpless of all animals. She can neither run upon her feet, nor raise herself from the ground. These inabilities are made up to her by the contrivance in her wing: and in placing a claw on that part, the Creator has deviated from the analogy observed in winged animals.—A singular defect required a singular substitute.

III. The crane-kind are to live and seek their food amongst the waters; yet, having no web-feet, are incapable of swimming. To make up for this deficiency, they are furnished with long legs for wading, or long bills for groping; or usually with both. This is compensation. But I think the true reflection upon the present instance is, how every part of nature is tenanted by appropriate inhabitants. Not only is the surface of deep waters peopled by numerous tribes of birds that swim, but marshes and shallow pools are furnished with hardly less numerous tribes of birds that wade.

IV. The common parrot has, in the structure of its beak, both an inconveniency, and a compensation for it. When I speak of an inconveniency, I have a view to a dilemma which frequently occurs in the works of nature, viz. that the peculiarity of structure by which an organ is made to answer one

« VorigeDoorgaan »