Pagina-afbeeldingen
PDF
ePub

II. The second difficulty which has been stated, was the suiting of the same organ to the perception of objects that lie near at hand, within a few inches, we will suppose, of the eye, and of objects which are placed at a considerable distance from it, that, for example, of as many furlongs;(I speak in both cases of the distance at which distinct vision can be exercised.) Now this, according to the principles of optics, that is, according to the laws by which the transmission of light is regulated, (and these laws are fixed,) could not be done without the organ itself undergoing an alteration and receiving an adjustment, that might correspond with the exigency of the case, that is to say, with the different inclination to one another under which the rays of light reached it. Rays issuing from points placed at a small distance from the eye, and which consequently must enter the eye in a spreading or diverging order, cannot, by the same optical instrument in the same state, be brought to a point, i. e. be made to form an image, in the same place with rays proceeding from objects situated at a much greater distance, and which rays arrive at the eye in directions nearly (and physically speaking) parallel. It requires a rounder lens to do it. The point of concourse behind the lens must fall critically upon the retina, or the vision is confused;* yet other things remaining the same, this point, by the immutable properties of light, is carried farther back when the rays proceed from a near object than when they are sent from one that is remote. A person who was using an optical instrument, would manage this matter by changing, as the occasion required, his lens or his telescopes; or by adjusting the distance of his glasses with his hand or his screw: but how is it to be managed in the eye? What the alteration was, or in what part of the eye it took place, or by what means it was effected, (for if the known

be so thrown as to pass through the aperture, and fall upon the retina without touching the iris at all, still a contraction of the iris immediately takes place. So that light upon the iris alone occasions no contraction, although it is the part which really contracts when the same light falls upon a distant part. The design here is too obvious to need being enlarged upon. How could the iris acquire the power of contracting when light falls on another membrane, for the protection of that membrane? although it does not contract when the light falls upon itself alone ?—[ Ed. *The focus of the refracted rays must fall exactly on the retina, so that the point of vision may be neither produced beyond it, nor shortened so as not to reach it. The latter defect exists in short-sighted perfrom too great convexity of the cornea or lens. The former is the defect of long-sighted persons, in whom there is an opposite conformation of those parts.-Paxton.

sons,

ws which govern the refraction of light be maintained, some alteration in the state of the organ there must, be,} had long formed a subject of inquiry and conjecture. The change, though sufficient for the purpose, is so minute as to elude ordinary observation. Some very late discoveries, deduced from a laborious and most accurate inspection of the structure and operation of the organ, seem at length to have ascertained the mechanical alteration which the parts of the eye undergo. It is found, that by the action of certain muscles [Pl. II. fig. 7.] called the straight muscles, and which action is the most advantageous that could be imagined for the purpose,-it is found, I say, that whenever the eye is directed to a near object, three changes are produced in it at the same time, all severally contributing to the adjustment required. The cornea, or outermost coat of the eye, is rendered more round and prominent; the crystalline lens underneath is pushed forwards; and the axis of vision, as the depth of the eye is called, is elongated. These changes in the eye vary its power over the rays of light in such a manner and degree as to produce exactly the effect which is wanted, viz. the formation of an image upon the retina, whether the rays come to the eye in a state of divergency, which is the case when the object is near to the eye, or come parallel to one another, which is the case when the object is placed at a distance. Can anything be more decisive of contrivance than this is? The most secret laws of optics must have been known to the author of a structure endowed with such a capacity of change. It is as though an optician, when he had a nearer object to view, should rectify his instrument by putting in another glass, at the same time drawing out also his tube to a different length.

Observe a new-born child first lifting up its eyelids. What does the opening of the curtain discover? The anterior part of two pellucid globes, which, when they come to be examined, are found to be constructed upon strict optical principles; the selfsame principles upon which we ourselves construct optical instruments. We find them perfect for the purpose of forming an image by refraction; composed of parts executing different offices; one part having fulfilled its office upon the pencil of light, delivering it over to the action of another part; that to a third, and so onward; the progressive action depending for its success upon the nicest and minutest adjustment of the parts concerned; yet these parts so in fact adjusted, as to

produce, not by a simple action or effect, but by a combination of actions and effects, the result which is ultimately wanted. And forasmuch as this organ would have to operate under different circumstances, with strong degrees of light and with weak degrees, upon near objects, and upon remote ones, and these differences demanded, according to the laws by which the transmission of light is regulated, a corresponding diversity of structure; that the aperture, for example, through which the light passes, should be larger or less; the lenses rounder or flatter, or that their distance from the tablet, upon which the picture is delineated, should be shortened or lengthened: this, I say, being the case, and the difficulty to which the eye was to be adapted, we find its several parts capable of being occasionally changed, and a most artificial apparatus provided to produce that change. This is far beyond the common. regulator of a watch, which requires the touch of a foreign hand to set it; but it is not altogether unlike Harrison's contrivance for making a watch regulate itself, by inserting within it a machinery, which, by the artful use of the different expansion of metals, preserves the equability of the motion under all the various temperatures of heat and cold in which the instrument may happen to be placed. The ingenuity of this last contrivance has been justly praised. Shall, therefore, a structure which differs from it, chiefly by surpassing it, be accounted no contrivance at all? or, if it be a contrivance, that it is without a contriver?

But this, though much, is not the whole by different species of animals the faculty we are describing is possessed, in degrees suited to the different range of vision which their mode of life, and of procuring their food, requires. Birds, for instance, in general, procure their food by means of their beak; and, the distance between the eye and the point of the beak being small, it becomes necessary that they should have the power of seeing very near objects distinctly. On the other hand, from being often elevated much above the ground, living in air, and moving through it with great velocity, they require, for their safety, as well as for assisting them in descrying their prey, a power of seeing at a great distance; a power, of which, in birds of rapine, surprising examples are given. The fact accordingly is, that two peculiarities are found in the eyes of birds, both tending to facilitate the change upon which the adjustment of the eye to different distances depends. The one is a bony, yet, in most species, a flexible rim or

hoop, [Plate III. fig. 1, 2.] surrounding the broadest part of the eye; which, confining the action of the muscles to that part, increases the effect of their lateral pressure upon the orb, by which pressure its axis is elongated for the purpose of looking at very near objects. The other is an additional muscle, called the marsupium, [Plate III. fig. 3, 4, 6.] to draw, upon occasion, the crystalline lens back, and to fit the same eye for the viewing of very distant objects By these means, the eyes of birds can pass from one extreme to another of their scale of adjustment, with more ease and readiness than the eyes of other animals.

The eyes of fishes also, compared with those of terrestrial animals, exhibit certain distinctions of structure adapted to their state and element. We have already observed upon the figure of the crystalline compensating by its roundness the density of the medium through which their light passes. To which we have to add, that the eyes of fish, in their natural and indolent state, appear to be adjusted to near objects, in this respect differing from the human eye, as well as those of quadrupeds and birds. The ordinary shape of the fish's eye being in a much higher degree convex than that of land animals, a corresponding difference attends its muscular conformation, viz. that it is throughout calculated for flattening the eye.

The iris also in the eyes of fish does not admit of contraction. This is a great difference, of which the probable reason is, that the diminished light in water is never too strong for the retina.

In the eel, [Plate III. fig. 5.] which has to work its head

The flexible rim, or hoop, consists of bony plates, which in all birds occupy the front of the sclerotic; lying close together and overlapping each other. These bony plates in general form a slightly convex ring, Fig. 1, but in the accipitres they form a concave ring, as in Fig. 2, the bony rim of a hawk. It is a principle in optics, that the rays of light, passing through a lens, will be refracted to a point or focus beyond the lens, and this focus will be less distant in proportion as the lens approaches to a sphere in shape. This principle is very naturally applied to the explanation of the use of this apparatus. These scales partly lying over each other, so as to allow of motion, will, on the contraction of the straight muscles inserted into and covering them, move over each other, and diminish the circle of the sclerotica; and thus the cornea, which is immediately within the circle made by these scales, must be pressed forwards and rendered more convex, from the focus of the eye becoming altered, by its axis being elongated. This consequent convexity of the cornea renders small objects near the animal very distinct. Without this structure a bird would be continually liable to dash itself against trees when flying in a thick forest, and would be unable to see the minut objects on which it sometimes feeds.--Paxton.

through sand and gravel, the roughest and harshest substances, there is placed before the eye, and at some distance from it, a transparent, horny, convex case or covering, which, without obstructing the sight, defends the organ. To such an animal, could anything be more wanted, or more useful?

Thus, in comparing the eyes of different kinds of animals, we see, in their resemblances and distinctions, one general plan laid down, and that plan varied with the varying exigencies to which it is to be applied.

There is one property, however, common, I believe, to all eyes, at least to all which have been examined,* namely, that the optic nerve enters the bottom of the eye, not in the centre or middle, but a little on one side; not in the point where the axis of the eye meets the retina, but between that point and the nose. The difference which this makes is, that no part of an object is unperceived by both eyes at the same time.

In considering vision as achieved by the means of an image formed at the bottom of the eye, we can never reflect without wonder upon the smallness, yet correctness, of the picture, the subtilty of the touch, the fineness of the lines. A landscape of five or six square leagues is brought into a space of half an inch diameter; yet the multitude of objects which it contains, are all preserved; are all discriminated in their magnitudes, positions, figures, colors. The prospect from Hampstead-hill is compressed into the compass of a sixpence, yet circumstantially represented. A stage-coach, travelling at its ordinary speed for half an hour, passes, in the eye, only over one-twelfth of an inch, yet is this change of place in the image distinctly perceived throughout its whole progress; for it is only by means of that perception that the motion of the coach itself is made sensible to the eye. If anything can abate our admiration of the smallness of the visual tablet compared with the extent of vision, it is a reflection, which the view of nature leads us, every hour, to make, viz. that in the hands of the Creator, great and little are nothing.

Sturmius held, that the examination of the eye was a cure for atheism. Besides that conformity to optical principles which its internal constitution displays, and which alone amounts to a manifestation of intelligence having been exerted in the structure; besides this, which forms,

*The eye of the seal or sea-calf, I understand, is an exception.---Mem Acad. Paris, 1701, p. 123.

« VorigeDoorgaan »