either Auid or solid, because such an intervening substance would, by its resistance, destroy those very motions, which attraction is employed to preserve. This may be a final cause of the difference; but still the difference destroys the analogy.

Our ignorance, morever, of the sensitive natures, by which other, planets are inhabited, necessarily keeps from us the knowledge of numberless utilities, relations, and subserviencies, which we perceive upon our own globe.

After all; the real subject of admiration is, that we understand so much of astronomy as we do. That an animal confined to the surface of one of the planets ; bearing a less proportion to it than the smallest microscopic insect does to the plant it lives upon; that this little, busy, inquisitive creature, by the use of senses which were given to it for its domestic necessities, and by means of the assistants of those senses which it has had the art to procure, should have been enabled to observe the whole system of worlds to which its own belongs; the changes of place of the immense globes which

compose it; and with such accuracy, as to mark out beforehand, the situation in the heavens in which they will be found at any future point of time; and that these bodies, after sailing through regions of void and trackless space, should arrive at the place where they were expected, not within a minute, but within a few seconds of a minute, of the time prefixed and predicted: all this is wonderful, whether we refer our admiration to the constancy of the heavenly motions themselves, or to the perspicacity and precision with which they have been noticed by mankind. Nor is this the whole, nor indeed the chief part, of what astronomy teaches. By bringing reason to bear upon observation (the acutest reasoning upon the exactest obser

vation), the astronomer has been able, out of the “ mystic dance," and the confusion (for such it is) under which the motions of the heavenly bodies present themselves to the eye of a mere gazer upon the skies, to elicit their order and their real paths.

Our knowledge therefore of astronomy is admirable, though imperfect: and, amidst the confessed desiderata and desideranda, which impede our investigation of the wisdom of the Deity in these the grandest of his works, there are to be found, in the phænomena, ascertained circumstances and laws, sufficient to indicate an intellectual agency in three of its principal operations, viz. in choosing, in determining, in regulating; in choosing, out of a boundless variety of suppositions which were equally possible, that which is beneficial; in detere mining, what, left to itself, had a thousand chances against conveniency, for one in its favour; in regulating subjects, as to quantity and degree, which, by their nature, were unlimited with respect to either. It will be our business to offer, under each of these heads, a few instances, such as best admit of a popular explication.

I. Amongst proofs of choice, one is, fixing the source of light and heat in the centre of the system. The sun is ignited and luminous ; the planets, which move round him, cold and dark. There seems to be no antes cedent necessity for this order. The sun might have been an opaque mass; some one, or two, or more, or any, or all, the planets, globes of fire. There is nothing in the nature of the heavenly bodies, which requires that those which are stationary should be on fire, that those which move should be cold: for, in fact, comets are bodies on fire, or at least capable of the most intense heat, yet revolve round a centre: nor does this order obtain between the primary planets and their second



aries, which are opaque.

When we consider, there. fore, that the sun is one ; that the planets going round it are, at least, seven; that it is indifferent to their nature, which are luminous and which are opaque ; and also, in what order, with respect to each other, these two kinds of bodies are disposed; we may judge of the improbability of the present arrangement taking place by chance.

If, by way of accounting for the state in which we find the solar system, it be alleged (and this is one amongst the guesses of those who reject an intelligent Creator), that the planets themselves are only cooled or cooling masses, and were once, like the sun, many thousand times hotter than red-hot iron; then it fol. lows, that the sun also himself must be in his progress towards growing cold; which puts an end to the possibility of his having existed, as he is, from eternity. This consequence arises out of the hypothesis with still more certainty, if we make a part of it, what the philosophers who maintain it have usually taught, that the planets were originally masses of matter, struck off in a state of fusion, from the body of the sun by the percussion of a comet, or by a shock from some other cause, with which we are not acquainted: for, if these masses, partaking of the nature and substance of the sun's body, have in process of time lost their heat, that body itself, in time likewise, no matter in how much longer time, must lose its heat also, and therefore be incapable of an eternal duration in the state in which we see it, either for the time to come, or the time past.

The preference of the present to any other mode of distributing luminous and opaque bodies, I take to be evident. It requires more astronomy than I am able to lay before the reader, to show, in its particulars, what would be the effect to the system, of a dark body at

the centre, and of one of the planets being luminous : but I think it manifest, without either plates or calcu. lation, first, that supposing the necessary proportion of magnitude between the central and the revolving bodies to be preserved, the ignited planet would not be sufficient to illuminate and warm the rest of the system; secondly, that its light and heat would be imparted to he other planets much more irregularly than light and heat are now received from the sun.

(*) II. Another thing, in which a choice appears to be exercised, and in which, amongst the possibilities out of which the choice was to be made, the number of those which were wrong, bore an infinite proportion to the number of those which were right, is in what

geometricians call the axis of rotation. This matter I will endeavour to explain. The earth, it is well known, is not an exact globe, but an oblate spheroïd, something like an orange. Now the axes of rotation, or the diameters upon which such a body may be made to turn round, are as many as can be drawn through its centre to opposite points upon its whole surface : but of these axes none are permanent, except either its shortest diameter, i. e, that which passes through the heart of the orange from the place where the stalk is inserted into it, and which is but one; or its longest diameters, at right angles with the former, which must all terminate in the single circumference which goes round the thickest part of the orange. The shortest diameter is that


which in fact the earth turns, and it is, as the reader sees, what it onght to be, a permanent axis; whereas, had blind chance, had a casual impulse, had a stroke or push at random, set the earth a-spinning, the odds were infinite, but that they had sent it round upon a wrong axis. And what would have been the consequence ? The difference between a permament axis and another

axis is this: When a spheroïd in a state of rotatory motion gets upon a permanent axis, it keeps there; it. remains steady and faithful to its position; its poles preserve their direction with respect to the plane and to the centre of its orbit: but, whilst it turns upon an axis which is not permanent (and the number of those we have seen infinitely exceeds the number of the other), it is always liable to shift and vacillate from one axis to another, with a corresponding change in the inclination of its poles. Therefore, if a planet once set off revolving upon any other than its shortest, or one of its longest axes, the poles on its surface would keep perpetually changing, and it never would attain a permanent axis of rotation. The effect of this unfixedness and instability would be, that the equatorial parts of the earth might become the polar, or the polar the equatorial; to the utter destruction of plants and animals, which are not capable of interchanging their situations, but are respectively adapted to their

As to ourselves, instead of rejoicing in our temperate zone, and annually preparing for the moderate vicissitude, or rather the agreeable succession of seasons, which we experience and expect, we might come to be locked up in the ice and darkness of the arctic circle, with bodies neither inured to its rigours, nor provided with shelter or defence against them. Nor would it be much better, if the trepidation of our pole, taking an opposite course, should place us under the heats of a vertical sun. But if it would fare so ill with the human inhabitant, who can live under greater varieties of latitude than any other animal ; still more noxious would this translation of climate have proved to life in the rest of the creation; and, most perhaps of all, in plants. The habitable earth, and its beautiful


« VorigeDoorgaan »